3.2616 \(\int \frac{1}{(1-2 x)^{5/2} (2+3 x)^3 \sqrt{3+5 x}} \, dx\)

Optimal. Leaf size=137 \[ -\frac{57595 \sqrt{5 x+3}}{249018 \sqrt{1-2 x}}+\frac{51 \sqrt{5 x+3}}{28 (1-2 x)^{3/2} (3 x+2)}-\frac{1735 \sqrt{5 x+3}}{3234 (1-2 x)^{3/2}}+\frac{3 \sqrt{5 x+3}}{14 (1-2 x)^{3/2} (3 x+2)^2}-\frac{5805 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{1372 \sqrt{7}} \]

[Out]

(-1735*Sqrt[3 + 5*x])/(3234*(1 - 2*x)^(3/2)) - (57595*Sqrt[3 + 5*x])/(249018*Sqrt[1 - 2*x]) + (3*Sqrt[3 + 5*x]
)/(14*(1 - 2*x)^(3/2)*(2 + 3*x)^2) + (51*Sqrt[3 + 5*x])/(28*(1 - 2*x)^(3/2)*(2 + 3*x)) - (5805*ArcTan[Sqrt[1 -
 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(1372*Sqrt[7])

________________________________________________________________________________________

Rubi [A]  time = 0.0447339, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {103, 151, 152, 12, 93, 204} \[ -\frac{57595 \sqrt{5 x+3}}{249018 \sqrt{1-2 x}}+\frac{51 \sqrt{5 x+3}}{28 (1-2 x)^{3/2} (3 x+2)}-\frac{1735 \sqrt{5 x+3}}{3234 (1-2 x)^{3/2}}+\frac{3 \sqrt{5 x+3}}{14 (1-2 x)^{3/2} (3 x+2)^2}-\frac{5805 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{1372 \sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Int[1/((1 - 2*x)^(5/2)*(2 + 3*x)^3*Sqrt[3 + 5*x]),x]

[Out]

(-1735*Sqrt[3 + 5*x])/(3234*(1 - 2*x)^(3/2)) - (57595*Sqrt[3 + 5*x])/(249018*Sqrt[1 - 2*x]) + (3*Sqrt[3 + 5*x]
)/(14*(1 - 2*x)^(3/2)*(2 + 3*x)^2) + (51*Sqrt[3 + 5*x])/(28*(1 - 2*x)^(3/2)*(2 + 3*x)) - (5805*ArcTan[Sqrt[1 -
 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(1372*Sqrt[7])

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{(1-2 x)^{5/2} (2+3 x)^3 \sqrt{3+5 x}} \, dx &=\frac{3 \sqrt{3+5 x}}{14 (1-2 x)^{3/2} (2+3 x)^2}+\frac{1}{14} \int \frac{-\frac{1}{2}-90 x}{(1-2 x)^{5/2} (2+3 x)^2 \sqrt{3+5 x}} \, dx\\ &=\frac{3 \sqrt{3+5 x}}{14 (1-2 x)^{3/2} (2+3 x)^2}+\frac{51 \sqrt{3+5 x}}{28 (1-2 x)^{3/2} (2+3 x)}+\frac{1}{98} \int \frac{-\frac{5005}{4}-3570 x}{(1-2 x)^{5/2} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=-\frac{1735 \sqrt{3+5 x}}{3234 (1-2 x)^{3/2}}+\frac{3 \sqrt{3+5 x}}{14 (1-2 x)^{3/2} (2+3 x)^2}+\frac{51 \sqrt{3+5 x}}{28 (1-2 x)^{3/2} (2+3 x)}-\frac{\int \frac{\frac{38815}{8}+\frac{182175 x}{2}}{(1-2 x)^{3/2} (2+3 x) \sqrt{3+5 x}} \, dx}{11319}\\ &=-\frac{1735 \sqrt{3+5 x}}{3234 (1-2 x)^{3/2}}-\frac{57595 \sqrt{3+5 x}}{249018 \sqrt{1-2 x}}+\frac{3 \sqrt{3+5 x}}{14 (1-2 x)^{3/2} (2+3 x)^2}+\frac{51 \sqrt{3+5 x}}{28 (1-2 x)^{3/2} (2+3 x)}+\frac{2 \int \frac{14750505}{16 \sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx}{871563}\\ &=-\frac{1735 \sqrt{3+5 x}}{3234 (1-2 x)^{3/2}}-\frac{57595 \sqrt{3+5 x}}{249018 \sqrt{1-2 x}}+\frac{3 \sqrt{3+5 x}}{14 (1-2 x)^{3/2} (2+3 x)^2}+\frac{51 \sqrt{3+5 x}}{28 (1-2 x)^{3/2} (2+3 x)}+\frac{5805 \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx}{2744}\\ &=-\frac{1735 \sqrt{3+5 x}}{3234 (1-2 x)^{3/2}}-\frac{57595 \sqrt{3+5 x}}{249018 \sqrt{1-2 x}}+\frac{3 \sqrt{3+5 x}}{14 (1-2 x)^{3/2} (2+3 x)^2}+\frac{51 \sqrt{3+5 x}}{28 (1-2 x)^{3/2} (2+3 x)}+\frac{5805 \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )}{1372}\\ &=-\frac{1735 \sqrt{3+5 x}}{3234 (1-2 x)^{3/2}}-\frac{57595 \sqrt{3+5 x}}{249018 \sqrt{1-2 x}}+\frac{3 \sqrt{3+5 x}}{14 (1-2 x)^{3/2} (2+3 x)^2}+\frac{51 \sqrt{3+5 x}}{28 (1-2 x)^{3/2} (2+3 x)}-\frac{5805 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )}{1372 \sqrt{7}}\\ \end{align*}

Mathematica [A]  time = 0.0624632, size = 95, normalized size = 0.69 \[ -\frac{-7 \sqrt{5 x+3} \left (2073420 x^3-676860 x^2-945629 x+391476\right )-2107215 \sqrt{7-14 x} (2 x-1) (3 x+2)^2 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{3486252 (1-2 x)^{3/2} (3 x+2)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((1 - 2*x)^(5/2)*(2 + 3*x)^3*Sqrt[3 + 5*x]),x]

[Out]

-(-7*Sqrt[3 + 5*x]*(391476 - 945629*x - 676860*x^2 + 2073420*x^3) - 2107215*Sqrt[7 - 14*x]*(-1 + 2*x)*(2 + 3*x
)^2*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(3486252*(1 - 2*x)^(3/2)*(2 + 3*x)^2)

________________________________________________________________________________________

Maple [B]  time = 0.016, size = 257, normalized size = 1.9 \begin{align*}{\frac{1}{6972504\, \left ( 2+3\,x \right ) ^{2} \left ( 2\,x-1 \right ) ^{2}} \left ( 75859740\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{4}+25286580\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{3}-48465945\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{2}+29027880\,{x}^{3}\sqrt{-10\,{x}^{2}-x+3}-8428860\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) x-9476040\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+8428860\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) -13238806\,x\sqrt{-10\,{x}^{2}-x+3}+5480664\,\sqrt{-10\,{x}^{2}-x+3} \right ) \sqrt{3+5\,x}\sqrt{1-2\,x}{\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1-2*x)^(5/2)/(2+3*x)^3/(3+5*x)^(1/2),x)

[Out]

1/6972504*(75859740*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^4+25286580*7^(1/2)*arctan(1/1
4*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^3-48465945*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2
))*x^2+29027880*x^3*(-10*x^2-x+3)^(1/2)-8428860*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x-9
476040*x^2*(-10*x^2-x+3)^(1/2)+8428860*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))-13238806*x*(
-10*x^2-x+3)^(1/2)+5480664*(-10*x^2-x+3)^(1/2))*(3+5*x)^(1/2)*(1-2*x)^(1/2)/(2+3*x)^2/(2*x-1)^2/(-10*x^2-x+3)^
(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{5 \, x + 3}{\left (3 \, x + 2\right )}^{3}{\left (-2 \, x + 1\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*x)^(5/2)/(2+3*x)^3/(3+5*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(5*x + 3)*(3*x + 2)^3*(-2*x + 1)^(5/2)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.61233, size = 356, normalized size = 2.6 \begin{align*} -\frac{2107215 \, \sqrt{7}{\left (36 \, x^{4} + 12 \, x^{3} - 23 \, x^{2} - 4 \, x + 4\right )} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \,{\left (2073420 \, x^{3} - 676860 \, x^{2} - 945629 \, x + 391476\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{6972504 \,{\left (36 \, x^{4} + 12 \, x^{3} - 23 \, x^{2} - 4 \, x + 4\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*x)^(5/2)/(2+3*x)^3/(3+5*x)^(1/2),x, algorithm="fricas")

[Out]

-1/6972504*(2107215*sqrt(7)*(36*x^4 + 12*x^3 - 23*x^2 - 4*x + 4)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)
*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 14*(2073420*x^3 - 676860*x^2 - 945629*x + 391476)*sqrt(5*x + 3)*sqrt(-2*x
+ 1))/(36*x^4 + 12*x^3 - 23*x^2 - 4*x + 4)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*x)**(5/2)/(2+3*x)**3/(3+5*x)**(1/2),x)

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Giac [B]  time = 3.47177, size = 400, normalized size = 2.92 \begin{align*} \frac{1161}{38416} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} - \frac{32 \,{\left (367 \, \sqrt{5}{\left (5 \, x + 3\right )} - 2211 \, \sqrt{5}\right )} \sqrt{5 \, x + 3} \sqrt{-10 \, x + 5}}{21789075 \,{\left (2 \, x - 1\right )}^{2}} + \frac{297 \,{\left (197 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{3} + 36680 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}\right )}}{4802 \,{\left ({\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{2} + 280\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*x)^(5/2)/(2+3*x)^3/(3+5*x)^(1/2),x, algorithm="giac")

[Out]

1161/38416*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22)
)^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 32/21789075*(367*sqrt(5)*(5*x + 3) - 2211*sqrt(5))
*sqrt(5*x + 3)*sqrt(-10*x + 5)/(2*x - 1)^2 + 297/4802*(197*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt
(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^3 + 36680*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5)
 - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))))/(((sqrt(2)*sqrt(-10*x + 5)
 - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)^2